21.12.18 선형대수 / Numpy
2021. 12. 19. 20:45ㆍ작업/머신러닝
import numpy as np
def main():
print(matrix_tutorial())
def matrix_tutorial():
A = [
[1,4,5,8],
[2,1,7,3],
[5,4,5,9]
]
print(np.array(A))
return A
if __name__ == "__main__":
main()
실습1 Numpy 행렬
실습2 Numpy 산술연산자
import numpy as np
def main():
print(matrix_tutorial())
def matrix_tutorial():
A = np.array([[1,4,5,8], [2,1,7,3], [5,4,5,9]])
A = A / np.sum(A) # 합이 1이 되도록 normalization
return np.var(A)
# 아래 코드를 작성하세요.
# 1.
# people = np.array([40,170,30])
# normalized_people = people/np.sum(people)
# print(normalized_people)
# # 2.
# low_var = np.array([1, 0.9, 1.2, 1.5, 0.7, 1.0])
# high_var = np.array([1,10,5,-20,7,30]) # 더 분산이 퍼져있다.
# print(np.var(low_var))
# print(np.var(high_var))
if __name__ == "__main__":
main()
0.002086
실습3 Numpy 논리연산자
import numpy as np
def main():
A = get_matrix()
print(matrix_tutorial(A))
def get_matrix():
mat = []
[n, m] = [int(x) for x in input().strip().split(" ")]
for i in range(n):
row = [int(x) for x in input().strip().split(" ")]
mat.append(row)
return np.array(mat)
def matrix_tutorial(A):
# 아래 코드를 완성하세요.
B = A.T # np.transpost(B)
print(B)
try:
C = np.linalg.inv(B) # B의 역행렬 구하기
except:
return 'not invertible'
return np.sum(C>0)
if __name__ == "__main__":
main()
'작업 > 머신러닝' 카테고리의 다른 글
21.12.19 모의테스트 (0) | 2021.12.19 |
---|---|
21.12.18 나이브베이즈 분류 (0) | 2021.12.19 |
21.12.18 회귀분석 (0) | 2021.12.19 |
21.12.18 머신러닝 분류(Classification) (0) | 2021.12.19 |
21.12.18 머신러닝 회귀(Regression) (0) | 2021.12.19 |